Simple task-specific bilingual word embeddings

نویسندگان

  • Stephan Gouws
  • Anders Søgaard
چکیده

We introduce a simple wrapper method that uses off-the-shelf word embedding algorithms to learn task-specific bilingual word embeddings. We use a small dictionary of easily-obtainable task-specific word equivalence classes to produce mixed context-target pairs that we use to train off-the-shelf embedding models. Our model has the advantage that it (a) is independent of the choice of embedding algorithm, (b) does not require parallel data, and (c) can be adapted to specific tasks by re-defining the equivalence classes. We show how our method outperforms off-the-shelf bilingual embeddings on the task of unsupervised cross-language partof-speech (POS) tagging, as well as on the task of semi-supervised cross-language super sense (SuS) tagging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilingual Word Embeddings for Phrase-Based Machine Translation

We introduce bilingual word embeddings: semantic embeddings associated across two languages in the context of neural language models. We propose a method to learn bilingual embeddings from a large unlabeled corpus, while utilizing MT word alignments to constrain translational equivalence. The new embeddings significantly out-perform baselines in word semantic similarity. A single semantic simil...

متن کامل

A Distribution-based Model to Learn Bilingual Word Embeddings

We introduce a distribution based model to learn bilingual word embeddings from monolingual data. It is simple, effective and does not require any parallel data or any seed lexicon. We take advantage of the fact that word embeddings are usually in form of dense real-valued lowdimensional vector and therefore the distribution of them can be accurately estimated. A novel cross-lingual learning ob...

متن کامل

Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction

We propose a simple yet effective approach to learning bilingual word embeddings (BWEs) from non-parallel document-aligned data (based on the omnipresent skip-gram model), and its application to bilingual lexicon induction (BLI). We demonstrate the utility of the induced BWEs in the BLI task by reporting on benchmarking BLI datasets for three language pairs: (1) We show that our BWE-based BLI m...

متن کامل

A Multi-task Learning Approach to Adapting Bilingual Word Embeddings for Cross-lingual Named Entity Recognition

We show how to adapt bilingual word embeddings (BWE’s) to bootstrap a crosslingual name-entity recognition (NER) system in a language with no labeled data. We assume a setting where we are given a comparable corpus with NER labels for the source language only; our goal is to build a NER model for the target language. The proposed multi-task model jointly trains bilingual word embeddings while o...

متن کامل

Language classification from bilingual word embedding graphs

We study the role of the second language in bilingual word embeddings in monolingual semantic evaluation tasks. We find strongly and weakly positive correlations between down-stream task performance and second language similarity to the target language. Additionally, we show how bilingual word embeddings can be employed for the task of semantic language classification and that joint semantic sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015